Sains Malaysiana 55(1)(2026): 47-59

http://doi.org/10.17576/jsm-2026-5501-04

 

Exploring Actinobacteria from Karst Cave on Sumba Island: A New Source of Antimycobacterial Compounds

(Menerokai Aktinobakteria daripada Gua Karst di Pulau Sumba: Sumber Baharu Sebatian Antimikobakteria)

 

ADE LIA PUTRI1,2,*, YULIN LESTARI2, IMAN RUSMANA2 & ARIF NURKANTO1

 

1Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Science and Techno Park Soekarno. Jl. Jakarta Bogor Km 46, Cibinong, West Java 16911, Indonesia

2IPB university, Indonesia, Jl. Raya Dramaga, Kampus IPB Dramaga Bogor, 16680 West Java, Indonesia

 

Diserahkan: 8 Mac 2025/Diterima: 6 November 2025

 

Abstract

Multidrug-resistant (MDR) mycobacteria are considered a major challenge in tuberculosis treatment, creating an urgent need for novel antimycobacterial drugs. Actinobacteria, known for their ability to produce bioactive compounds, are considered promising sources for new drug discovery. In this study, 87 actinobacteria isolates were successfully obtained from five samples collected in a karst cave on Sumba Island, Indonesia. The isolates were screened for antimycobacterial activity against Mycobacterium smegmatis wild-type (WT-M.smeg), rifampicin-resistant (RIFR-M.smeg), isoniazid-resistant (INHR-M.smeg), and multidrug-resistant (MDR-M.smeg) strains. Sixteen extracts were found to inhibit WT-M.smeg, with three extracts from isolates KRST 02-20, KRST 03-10, and KRST 05-08 showing potent activity against all resistant strains (≥95% growth inhibition). The extract of isolate KRST 03-10 was observed to exhibit the most significant inhibition, with IC50 values of 9.63 µg/mL (WT-M.smeg), 29.64 µg/mL (RIFR-M.smeg), 10.89 µg/mL (INHR-M.smeg), and 27.76 µg/mL (MDR-M.smeg). Molecular identification showed that this isolate has the highest similarity (98.91%) with Streptomyces cinereoruber NBRC 12756. Gas chromatography-mass spectrometry (GC-MS) analysis identified 2,4-di-tert-butylphenol as a compound with potential antituberculosis activity, while liquid chromatography-high-resolution mass spectrometry (LC-HRMS) detected nocardamine, L-α-palmitin, erucamide, and 2-anisic acid, all known for their antimicrobial activity. An unidentified compound, NP-011220 (C11H18O2), was also detected in high relative abundance. Further research is needed to evaluate the activity of the most promising isolate, KRST 03-10, against Mycobacterium tuberculosis and to purify its active compounds.

Keywords: Isoniazid-resistant; Mycobacterium smegmatis; multidrug-resistant; rifampicin-resistant; tuberculosis

 

Abstrak

Mikobakteria rintang pelbagai ubat (MDR) dianggap sebagai cabaran utama dalam rawatan tuberkulosis, mewujudkan keperluan mendesak untuk ubat antimikobakteria baharu. Aktinobakteria yang dikenali kerana keupayaannya menghasilkan sebatian bioaktif, dianggap sebagai sumber yang berpotensi untuk penemuan ubat baharu. Dalam kajian ini, 87 pencilan aktinobakteria telah berjaya diperoleh daripada lima sampel yang dikumpulkan di gua kars di Pulau Sumba, Indonesia. Pencilan telah disaring untuk aktiviti antimikobakteria terhadap strain Mycobacterium smegmatis jenis liar (WT-M.smeg), rintang rifampisin (RIFR-M.smeg), rintang isoniazid (INHR-M.smeg) dan rintang pelbagai ubat (MDR-M.smeg). Enam belas ekstrak didapati menghalang WT-M.smeg dengan tiga ekstrak daripada pencilan KRST 02-20, KRST 03-10 dan KRST 05-08 menunjukkan aktiviti yang kuat terhadap semua strain yang rintang (perencatan pertumbuhan ≥95%). Ekstrak pencilan KRST 03-10 menunjukkan perencatan yang paling ketara dengan nilai IC50 9.63 µg/mL (WT-M.smeg), 29.64 µg/mL (RIFR-M.smeg), 10.89 µg/mL (INHR-M.smeg) dan 27.76 µg/mL (MDR-M.smeg). Pengenalpastian molekul menunjukkan bahawa pencilan ini mempunyai persamaan tertinggi (98.91%) dengan Streptomyces cinereoruber NBRC 12756. Analisis kromatografi gas-spektrometri jisim (GC-MS) mengenal pasti 2,4-di-tert-butilfenol sebagai sebatian dengan aktiviti antituberkulosis yang berpotensi, manakala kromatografi cecair-spektrometri jisim resolusi tinggi (LC-HRMS) mengesan nokardina, L-α-palmitin, erukamida dan asid 2-anisik, semuanya dikenali dengan aktiviti antimikrobnya. Sebatian yang tidak dikenali, NP-011220 (C11H18O2) juga dikesan dalam kelimpahan relatif yang tinggi. Kajian lanjut diperlukan untuk menilai aktiviti pencilan yang paling berpotensi, KRST 03-10 terhadap Mycobacterium tuberculosis dan untuk menulenkan sebatian aktifnya.

Kata kunci: Mycobacterium smegmatis; rintang isoniazid; rintang pelbagai ubat; rintang rifampicin; tuberkulosis

RUJUKAN

Arthur, P.K., Amarh, V., Cramer, P., Arkaifie, G.B., Blessie, E.J.S., Fuseini, M.S., Carilo, I., Yeboah, R., Asare, L. & Robertson, B.D. 2019. Characterization of two new multidrug-resistant strains of Mycobacterium smegmatis: Tools for routine in vitro screening of novel anti-mycobacterial agents. Antibiotics 8(1): 4.

Barghouthi, S.A., Ayyad, I., Ayesh, M. & Abu-Lafi, S. 2017. Isolation, identification, and characterization of the novel antibacterial agent methoxyphenyl-oxime from Streptomyces pratensis QUBC97 isolate. Journal of Antibiotics Research 1(1): 105.

Beskrovnaya, P., Sexton, D.L., Golmohammadzadeh, M., Hashimi, A. & Tocheva, E.I. 2021. Structural, metabolic, and evolutionary comparison of bacterial endospore and exospore formation. Frontiers in Microbiology 12: 630573.

Boeck, L.D. 1962. Development of a chemically defined medium for biosynthesis of capreomycin by Streptomyces capreolus.Kiva 28(1-2): 108-114.

Dai, S., Yu, C., Liang, M., Cheng, H., Li, W., Lai, F., Ma, L. & Liu, X. 2023. Oxidation characteristics and thermal stability of butylated hydroxytoluene. Arabian Journal of Chemistry 16(8): 104932.

Derewacz, D.K., McNees, C.R., Scalmani, G., Covington, C.L., Shanmugam, G., Marnett, L.J., Polavarapu, P.L. & Bachmann, B.O. 2014. Structure and stereochemical determination of hypogeamicins from a cave-derived actinomycete. Journal of Natural Products 77(8): 1759-1763.

Doroghazi, J.R. & Buckley, D.H. 2014. Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin. BMC Genomics 15(1): 970.

dos Santos, T.C., Gomes, T.M., Pinto, B.A.S., Camara, A.L. & de Andrade Paes, A.M. 2018. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Frontiers in Pharmacology 9: 1192.

Efendi, S.F., Rahmi, D., Ilyas, M., Agusta, A., Sciences, N., Sumatra, W., Medicine, T., Java, W. & Java, W. 2025. Antioxidant and antibacterial activities of plant and endophytic fungi extracts from Syzygium myrtifolium walp, with LC-HRMS profiling of active extracts 20(2): 404-414.

Farda, B., Djebaili, R., Vaccarelli, I., Del Gallo, M. & Pellegrini, M. 2022. Actinomycetes from Caves: An overview of their diversity, biotechnological properties, and insights for their use in soil environments. Microorganisms 10(2): 453.

Hamza, A.A., Clark, B.R. & Murphy, C.D. 2018. Antitumor activity of the cyclo (L-phenyl, L-prolyl) diketopiperazines produced by a newly isolated Streptomyces sp. A4.4. Sumerianz Journal of Biotechnology 1(5): 113-118.

Hayakawa, M. & Nonomura, H. 1989. A new method for the intensive isolation of actinomycetes from soil. Actinomycetol. 3(2): 95-104.

Hayakawa, M. & Nonomura, H. 1987. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 65(5): 501-509.

Hermawan, A., Windarsih, A., Putri, D.D.P. & Fatimah, N. 2025. LC-HRMS-based global metabolomics profiling unravels the distinct metabolic signature of lapatinib-resistant and trastuzumab-resistant HER2+ breast cancer cells. Journal of Pharmaceutical and Biomedical Analysis 253: 116528.

Hidajati, N., Tukiran, T., Setiabudi, D.A. & Wardana, A.P. 2018. Antioxidant activity of palmitic acid and pinostrobin from methanol extract of Syzygium litoralle (Myrtaceae). Proceedings of the International Conference on Science and Technology (ICST 2018). pp. 183-187.

Igarashi, M., Nakagawa, N., Doi, N., Hattori, S., Hiroshi, N. & Hamada, M. 2003. Caprazamycin B, a novel anti-tuberculosis antibiotic, from Streptomyces sp. Journal of Antibiotics (Tokyo) 56(6): 580-583.

Jagielski, T., Grzeszczuk, M., Kamiński, M., Roeske, K., Napiórkowska, A., Stachowiak, R., Augustynowicz-Kopeć, E., Zwolska, Z., Bielecki, J. & Bielecki, J. 2013. Identification and analysis of mutations in the katG gene in multidrug-resistant Mycobacterium tuberculosis clinical isolates. Pneumonol. Alergol. Pol. 81: 298-307.

Jha, N.K., Kumar, L.L., Sivasankar, C., Gopu, V., Devi, P.B., Murali, A. & Shetty, P.H. 2024. Cyclic di-peptide Cyclo (L-Phe-L-Pro) mitigates the quorum-sensing mediated virulence in Salmonella typhi and biofilm formation in poultry and plastic systems. Food Bioscience 60: 104391.

Jiang, L., Pu, H., Xiang, J., Su, M., Yan, X., Yang, D., Zhu, X., Shen, B., Duan, Y. & Huang, Y. 2018. Huanglongmycin A-C, cytotoxic polyketides biosynthesized by a putative type II polyketide synthase from Streptomyces sp. CB09001. Frontiers in Chemistry 6: 254.

Jiang, Z.K., Guo, L., Chen, C., Liu, S.W., Zhang, L., Dai, S.J., He, Q.Y., You, X.F., Hu, X.X., Tuo, L., Jiang, W. & Sun, C.H. 2015. Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of a karst cave. Journal of Antibiotics 68(12): 771-774.

Kaari, M., Joseph, J., Manikkam, R., Kalyanasundaram, R., Sivaraj, A., Anbalmani, S., Murthy, S., Sahu, A.K., Said, M., Dastager, S.G. & Ramasamy, B. 2023. A novel finding: 2,4-Di-tert-butylphenol from Streptomyces bacillaris ANS2 effective against Mycobacterium tuberculosis and cancer cell lines. Applied Biochemistry and Biotechnology 195(11): 6572-6585.

Kalinovskaya, N.I., Romanenko, L.A., Irisawa, T., Ermakova, S.P. & Kalinovsky, A.I. 2011. Marine isolate Citricoccus sp. KMM 3890 as a source of a cyclic siderophore nocardamine with antitumor activity. Microbiological Research 166(8): 654-661.

Kim, T.Y., Hwang, S.H., Noh, J.S., Cho, J.Y. & Maung, C.E.H. 2022. Antifungal potential of Bacillus velezensis CE 100 for the control of different Colletotrichum species through isolation of active dipeptide, Cyclo-(D-phenylalanyl-D-prolyl). International Journal of Molecular Sciences 23(14): 7786.

Koca, M., Yerdelen, K.O., Anil, B. & Kasap, Z. 2015. Microwave-assisted synthesis, molecular docking, and cholinesterase inhibitory activities of new ethanediamide and 2-butenediamide analogues. Chemical and Pharmaceutical Bulletin 63(3): 210-217.

Kumari, N., Menghani, E. & Mithal, R. 2019. GC-MS analysis of compounds extracted from actinomycetes AIA6 isolates and study of its antimicrobial efficacy. Indian Journal of Chemical Technology 26(4): 362-370.

Lelovic, N., Mitachi, K., Yang, J., Lemieux, M.R., Ji, Y. & Kurosu, M. 2020. Application of Mycobacterium smegmatis as a surrogate to evaluate drug leads against Mycobacterium tuberculosis. Journal of Antibiotics 73(11): 780-789.

Li, M.M., Jiang, Z., Song, L.Y., Quan, Z.S. & Yu, H.L. 2017. Antidepressant and anxiolytic-like behavioral effects of erucamide, a bioactive fatty acid amide, involving the hypothalamus–pituitary–adrenal axis in mice. Neuroscience Letters 640: 6-12.

Liu, Y., Liu, C., Rubinato, M., Guo, K., Zhou, J. & Cui, M. 2020. An assessment of soil’s nutrient deficiencies and their influence on the restoration of degraded karst vegetation in Southwest China. Forests 11(8): 797.

Mangalgikar, P., Madhura Bhanu, K.R., Belavadi, V., Vinod Kumar, P.K., Muniyappa, C. & Ammagarahalli, B. 2023. 1-octadecene, A female produced aggregation pheromone of the coffee white stem borer (Xylotrechus quadripes). Horticulturae 9(2): 173.

Masrukhin, Putri, A.L., Sulistiyani, T.R., Ilyas, M., Purnaningsih, I., Saskiawan, I. & Niam, M.Y. 2021. Antifungal activity of bacterial isolates from straw mushroom cultivation medium against phytopathogenic fungi. Journal of Tropical Biodiversity and Biotechnology 6(1): 59235.

Melnikov, N.N. 1971. Derivatives of carbamic acid. In Chemistry of Pesticides, edited by Gunther, F.A. & Gunther, J.D. New York: Springer. pp. 183-205.

Mohamed Gameil, A.H., Hashim, Y.Z.H-Y., Zainurin, N.A.A., Mohd Salleh, H. & Syed Abdullah, N. 2019. Anticancer potential and chemical profile of agarwood hydrosol. Malaysian Journal of Fundamental and Applied Sciences 15(5): 761-766.

Nayaka, S., Hiremath, H., Chakraborty, B., Swamy, P.S., Basavarajappa, D.S., Nagaraja, S.K., Rudrappa, M., Bhat, M.P., Airodagi, D. & Murigennavar, M.S. 2020. Efficacy of antibiotic sensitivity and antimicrobial activity of Streptomyces cinereoruber RSA-14 isolated from rhizosphere soil of Alternanthera sessilis (L.) R. Br. ex DC. Journal of Applied Biology and Biotechnology 8(4): 1-6.

Ngamcharungchit, C., Chaimusik, N., Panbangred, W., Euanorasetr, J. & Intra, B. 2023. Bioactive metabolites from terrestrial and marine actinomycetes. Molecules 28(15): 5915.

Nurkanto, A., Masrukhin, Erdian Tampubolon, J.C., Ewaldo, M.F., Putri, A.L., Ratnakomala, S., Setiawan, R., Fathoni, A., Palupi, K.D., Rahmawati, Y., Waluyo, D., Prabandari, E.E., Pujiyanto, S., Sumii, Y., Agusta, A., Shibata, N., Matsumoto, S. & Nozaki, T. 2024. Exploring Indonesian actinomycete extracts for anti-tubercular compounds: Integrating inhibition assessment, genomic analysis, and prediction of its target by molecular docking. Heliyon 10(15): e35648.

Park, W., Woo, J.K., Shin, J. & Oh, K.B. 2017. nonG, a constituent of the nonactin biosynthetic gene cluster, regulates nocardamine synthesis in Streptomyces albus J1074. Biochemical and Biophysical Research Communications 490(3): 664-669.

Patil, V.T. & Jadhav, V.D. 2021. GC-MS and FTIR analysis of methanolic leaf extract of Rhynchosia minima (L.) DC. Current Botany 11: 221-225.

Praptiwi, Fathoni, A., Putri, A.L., Wulansari, D. & Agusta, A. 2023. Biological potency of actinomycetes extracts from rhizosphere soil of Dacrycarpus imbricatus from Toba Samosir, North Sumatra. Journal of Applied Pharmaceutical Science 13(6): 146-153.

Purushothaman, R., Vishnuram, G. & Ramanathan, T. 2014. Isolation and identification of n-hexadecanoic acid from Exoecaria agallocha L. and its antibacterial and antioxidant activity. Journal of Emerging Technologies and Innovative Research (JETIR) 11(1): d332-d342.

Putri, A.L. & Sumerta, I.N. 2020. Selective isolation of Dactylosporangium and Microsmonospora from the soil of karst cave of Simuelue Island and their antibacterial potency. Berita Biologi 19(3A): 257-268.

Rangseekaew, P. & Pathom-Aree, W. 2019. Cave actinobacteria as producers of bioactive metabolites. Front Microbial. 10: 387.

Rante, H., Manggau, M.A., Alam, G., Pakki, E., Erviani, A.E., Hafidah, N., Abidin, H.L. & Ali, A. 2024. Isolation and identification of Actinomycetes with antifungal activity from karts ecosystem in Maros-Pangkep, Indonesia. Biodiversitas 25(2): 458-464.

Retnowati, Y., Kandowangko, N.Y., Katili, A.S. & Pembengo, W. 2024. Diversity of actinomycetes on plant rhizosphere of karst ecosystem of Gorontalo, Indonesia. Biodiversitas 25(3): 907-915.

Sakula, A. 1988. Selman waksman (1888-1973), Discovery of streptomycin: A centerary review. Br. J. Dis. Chest. 82: 23-32.

Sarmiento-Tovar, A.A., Prada-Rubio, S.J., Gonzalez-Ronseria, J., Coy-Barrera, E. & Diaz, L. 2024. Exploration of the bioactivity of pigmented extracts from Streptomyces strains isolated along the banks of the Guaviare and Arauca Rivers (Colombia). Fermentation 10(10): 529.

Selim, M.S.M., Abdelhamid, S.A. & Mohamed, S.S. 2021. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. 19(1): 72.

Shaaban, M.T., Ghaly, M.F. & Fahmi, S.M. 2021. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. Journal of Basic Microbiology 61(6): 557-568.

Singh, R., Dwivedi, S.P., Gaharwar, U.S., Meena, R., Rajamani, P. & Prasad, T. 2020. Recent updates on drug resistance in Mycobacterium tuberculosis. Journal of Applied Microbiology 128(6): 1547-1567.

Tamura, K., Stecher, G. & Kumar, S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38(7): 3022-3027.

Tiwari, K. & Gupta, R.K. 2013. Diversity and isolation of rare actinomycetes: An overview. Critical Reviews in Microbiology 39(3): 256-294.

Tseng, S.T., Tai, C.H., Li, C.R., Lin, C.F. & Shi, Z.Y. 2015. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. Journal of Microbiology, Immunology and Infection 48(3): 249-255.

Umezawa, H., Ueda, M., Maeda, K., Yagishita, K., Kondo, S., Okami, Y., Utahara, R., Osato, S., Nitta, K. & Takeuchi, T. 1957. Production and isolation of a new antibiotic, kanamycin. The Journal of Antibiotics 10(5): 181-188.

Upadhyay, A.K., Chatterjee, D., Swain, M. & Ray, L. 2020. Evaluation of a potential antibacterial produced by Streptomyces cinereoruber sp. isolated from Chlika Lake. International Journal of Recent Technology and Engineering (IJRTE) 9(3): 187-197.

Vanitha, V., Vijayakumar, S., Nilavukkarasi, M., Punitha, V.N., Vidhya, E. & Praseetha, P.K. 2020. Heneicosane - A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products 154: 112748.

Victoria, L., Gupta, A., Gómez, J.L. & Robledo, J. 2021. Mycobacterium abscessus complex: A review of recent developments in an emerging pathogen. Front Cell Infect. Microbial. 11: 659997.

Wang, A., Li, P., Zhang, X., Han, P., Lai, D. & Zhou, L. 2018. Two new anisic acid derivatives from endophytic fungus Rhizopycnis vagum Nitaf22 and their antibacterial activity. Molecules 23(3): 2-7.

Wang, T., Liu, Y., Yang, N., Ji, C., Chan, P. & Zuo, P. 2012. Anti-parkinsonian effects of octacosanol in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-treated mice. Neural Regeneration Research 7(14): 1080-1087.

Williams, P. 2008. World Heritage Caves and Karst. International Union for Conservation of Nature World Heritage Studies 2: 1-50.

World Health Organization. 2024. Global Tuberculosis Report 2024.

World Health Organization. 2023. Global Tuberculosis Report 2023. World Organization for Animal Health.

Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H. & Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology 67(5): 1613-1617.

Zhang, J., Chung, D.Y. & Oldernburg, K.R. 1999. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of Biomolecular Screening 4(2): 66-73.

Zhang, W., Li, Z.F., Sun, Y., Cui, P., Liang, J., Xing, Q., Wu, J., Xu, Y., Zhang, W., Zhang, Y., He, L. & Gao, N. 2022. Cryo-EM structure of Mycobacterium tuberculosis 50S ribosomal subunit bound with clarithromycin reveals dynamic and specific interactions with macrolides. Emerging Microbes and Infections 11(1): 293-305.

Zhu, H.Z., Zhang, Z.F., Zhou, N., Jiang, C.Y., Wang, B.J., Cai, L. & Liu, S.J. 2019. Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system. Frontiers in Microbiology 10: https://doi.org/10.3389/fmicb.2019.01726

 

*Pengarang untuk surat-menyurat; email: adel004@brin.go.id

 

 

 

 

 

 

 

           

sebelumnya